
Bcfg2 Documentation

Bcfg2 Architecture1.
Installing Bcfg2

Standard Group Names1.
Example Bundles2.

2.

Bcfg2 Specifications3.
Probes

TCheetah Plugin1.
4.

DynamicGroups5.
Client Tool Drivers

Using Actions1.
6.

Deploying Bcfg2
Simple Deployments1.
A Near-Literal Deployment2.
An Abstract Deployment3.
Bcfg2 Server Administration4.
An example application of bcfg25.

7.

Developing for Bcfg28.
BCFG2 Reports

Dynamic Reports Installation1.
Dynamic Reports Usage2.

1.

Static Reports2.
Demo Repository3.
Troubleshooting4.
Manual Pages5.

9.

1.

Bcfg2 Documentation

Bcfg2 Architecture

Bcfg2 Architecture
Bcfg2 is based on a client-server architecture. The client is responsible for interpreting (but not processing) the
configuration served by the server. This configuration is literal, so no local process is required. After completion of the
configuration process, the client uploads a set of statistics to the server. This section will describe the goals and then the
architecture motivated by it.

Goals

Model configurations using declarative semantics.
Declarative semantics maximize the utility of configuration management tools; they provide the most
flexibility for the tool to determine the right course of action in any given situation. This means that users can
focus on the task of describing the desired configuration, while leaving the task of transitioning clients states to
the tool.

•

Configuration descriptions should be comprehensive.
This means that configurations served to the client should be sufficient to reproduce all desired functionality.

•

Bcfg2 Architecture 1

This assumption allows the use of heuristics to detect extra configuration, aiding in reliable, comprehensive
configuration definitions.
Provide a flexible approach to user interactions.
Most configuration management systems take a rigid approach to user interactions; that is, either the client
system is always correct, or the central system is. This means that users are forced into an overly proscribed
model where the system asserts where correct data is. Configuration data modification is frequently undertaken
on both the configuration server and clients. Hence, the existence of a single canonical data location can easily
pose a problem during normal tool use. Bcfg2 takes a different approach.

•

The default assumption is that data on the server is correct, however, the client has option to run in another mode where
local changes are catalogued for server-side integration. If the Bcfg2 client is run in dry run mode, it can help to
reconcile differences between current client state and the configuration described on the server. The Bcfg2 client also
searches for extra configuration; that is, configuration that is not specified by the configuration description. When extra
configuration is found, either configuration has been removed from the configuration description on the server, or
manual configuration has occurred on the client. Options related to two-way verification and removal are useful for
configuration reconciliation when interactive access is used.

Plugins and administrative applications.•
Incremental operations.•

The Bcfg2 Client

The Bcfg2 client performs all client configuration or reconfiguration operations. It renders a declarative configuration
specification, provided by the Bcfg2 server, into a set of configuration operations which will, if executed, attempt to
change the client's state into that described by the configuration specification. Conceptually, the Bcfg2 client serves to
isolate the Bcfg2 server and specification from the imperative operations required to implement configuration changes.

This isolation allows declarative specifications to be manipulated symbolically on the server, without needing to
understand the properties of the underlying system tools. In this way, the Bcfg2 client acts as a sort of expert system
that "knows" how to implement declarative configuration changes.

The operation of the Bcfg2 client is intended to be as simple as possible. The normal configuration process consists of
four main steps:

Probe Execution
During the probe execution stage, the client connects to the server and downloads a series of probes to execute.
These probes reveal local facts to the Bcfg2 server. For example, a probe could discover the type of video card
in a system. The Bcfg2 client returns this data to the server, where it can influence the client configuration
generation process.

•

Configuration Download and Inventory
The Bcfg2 client now downloads a configuration specification from the Bcfg2 server. The configuration
describes the complete target state of the machine. That is, all aspects of client configuration should be
represented in this specification. For example, all software packages and services should be represented in the
configuration specification. The client now performs a local system inventory. This process consists of
verifying each entry present in the configuration specification. After this check is completed, heuristic checks
for configuration not included in the configuration specification. We refer to this inventory process as 2-way
validation, as first we verify that the client contains all configuration that is included in the specification, then
we check if the client has any extra configuration that isn't present. This provides a fairly rigorous notion of
client configuration congruence. Once the 2-way verification process has been performed, the client has built a

•

Goals 2

list of all configuration entries that are out of spec. This list has two parts: specified configuration that is
incorrect (or missing) and unspecified configuration that should be removed.
Configuration Update
The client now attempts to update its configuration to match the specification. Depending on options, changes
may not (or only partially) be performed. First, if extra configuration correction is enabled, extra configuration
can be removed. Then the remaining changes are processed. The Bcfg2 client loops while progress is made in
the correction of these incorrect configuration entries. This loop results in the client being able to accomplish
all it will be able to during one execution. Once all entries are fixed, or no progress is being made, the loop
terminates.Once all configuration changes that can be performed have been, bundle dependencies are handled.
Bundle groupings result in two different behaviors. Contained entries are assumed to be inter-dependant. To
address this, the client re-verifies each entry in any bundle containing an updates configuration entry. Also,
services contained in modified bundles are restarted.

•

Statistics Upload
Once the reconfiguration process has concluded, the client reports information back to the server about the
actions it performed during the reconfiguration process. Statistics function as a detailed return code from the
client. The server stores statistics information. Information included in this statistics update includes (but is not
limited to):

Overall client status (clean/dirty)♦
List of modified configuration entries♦
List of uncorrectable configuration entries♦

•

Architecture Abstraction

The Bcfg2 client internally supports the administrative tools available on different architectures. For example, rpm and
apt-get are both supported, allowing operation of Debian, Redhat, SUSE, and Mandriva systems. The client toolset is
specified in the configuration specification. The client merely includes a series of libraries which describe how to
interact with the system tools on a particular platform.

Three of the libraries exist. There is a base set of functions, which contain definitions describing how to perform
POSIX operations. Support for configuration files, directories, and symlinks are included here. Two other libraries
subclass this one, providing support for Debian and rpm-based systems.

The Debian toolset includes support for apt-get and update-rc.d. These tools provide the ability to install and remove
packages, and to install and remove services.

The Redhat toolset includes support for rpm and chkconfig. Any other platform that uses these tools can also use this
toolset. Hence, all of the other familiar rpm-based distributions can use this toolset without issue.

Other platforms can easily use the POSIX toolset, ignoring support for packages or services. Alternatively, adding
support for new toolsets isn't difficult. Each toolset consists of about 125 lines of python code.

The Bcfg2 Server

The Bcfg2 server is responsible for taking a network description and turning it into a series of configuration
specifications for particular clients. It also manages probed data and tracks statistics for clients.

The Bcfg2 server takes information from two sources when generating client configuration specifications. The first is a
pool of metadata that describes clients as members of an aspect-based classing system. That is, clients are defined in
terms of aspects of their behavior. The other is a file system repository that contains mappings from metadata to literal

The Bcfg2 Client 3

configuration. These are combined to form the literal configuration specifications for clients.

The Configuration Specification Construction Process

As we described in the previous section, the client connects to the server to request a configuration specification. The
server uses the client's metadata and the file system repository to build a specification that is tailored for the client. This
process consists of the following steps:

Metadata Lookup
The server uses the client's IP address to initiate the metadata lookup. This initial metadata consists of a
(profile, image) tuple. If the client already has metadata registered, then it is used. If not, then default values are
used and stored for future use. This metadata tuple is expanded using some profile and class definitions also
included in the metadata. The end result of this process is metadata consisting of hostname, profile, image, a
list of classes, a list of attributes and a list of bundles.

•

Abstract Configuration Construction
Once the server has the client metadata, it is used to create an abstract configuration. An abstract configuration
contains all of the configuration elements that will exist in the final specification without any specifics. All
entries will be typed (ie the tagname will be one of Package, ConfigurationFile, Service, !Symlink, or
Directory) and will include a name. These configuration entries are grouped into bundles, which document
installation time interdependencies.

•

Configuration Binding
The abstract configuration determines the structure of the client configuration, however, it doesn't contain
literal configuration information. After the abstract configuration is created, each configuration entry must be
bound to a client-specific value. The Bcfg2 server uses plugins to provide these client-specific bindings. The
Bcfg2 server core contains a dispatch table that describes which plugins can handle requests of a particular
type. The responsible plugin is located for each entry. It is called, passing in the configuration entry and the
client's metadata. The behavior of plugins is explicitly undefined, so as to allow maximum flexibility. The
behaviours of the stock plugins are documented elsewhere in this manual. Once this binding process is
completed, the server has a literal, client-specific configuration specification. This specification is complete
and comprehensive; the client doesn't need to process it at all in order to use it. It also represents the totality of
the configuration specified for the client.

•

The Literal Configuration Specification

Literal configuration specifications are served to clients by the Bcfg2 server. This is a differentiating factor for Bcfg2;
all other major configuration management systems use a non-literal configuration specification. That is, the clients
receive a symbolic configuration that they process to implement target states. We took the literal approach for a few
reasons:

A small list of configuration element types can be defined, each of which can have a set of defined semantics.
This allows the server to have a well-formed model of client-side operations. Without a static lexicon with
defined semantics, this isn't possible. This allows the server, for example, to record the update of a package as a
coherent event.

•

Literal configurations do not require client-side processing. Removing client-side processing reduces the
critical footprint of the tool. That is, the Bcfg2 client (and the tools it calls) need to be functional, but the rest of
the system can be in any state. Yet, the client will receive a correct configuration.

•

Having static, defined element semantics also requires that all operations be defined and implemented in
advance. The implementation can maximize reliability and robustness. In more ad-hoc setups, these operations
aren't necessarily safely implemented.

•

The Bcfg2 Server 4

The Structure of Specifications

Configuration specifications contain some number of clauses. Two types of clauses exist. Bundles are groups of
inter-dependent configuration entities. The purpose of bundles is to encode installation-time dependencies such that all
new configuration is properly activated during reconfiguration operations. T hat is, if a daemon configuration file is
changed, its daemon should be restarted. Another example of bundle usage is the reconfiguration of a software
package. If a package contains a default configuration file, but it gets overwritten by an environment-specific one, then
that updated configuration file should survive package upgrade. The purpose of bundles is to describe services, or
reconfigured software packages. Independent clauses contains groups of configuration entities that aren't related in any
way. This provides a convenient mechanism that can be used for bulk installations of software.

Each of these clauses contains some number of configuration entities. Five types of configuration entities exist:
ConfigurationFile, Package, SymLink, Directory, and Service. Each of these correspond to the obvious system item.
Configuration specifications can get quite large; many systems have specifications that top one megabyte in size. An
example of one is included in an appendix. These configurations can be written by hand, or generated by the server.
The easiest way to start using Bcfg2 is to write small static configurations for clients. Once configurations get larger,
this process gets unwieldy; at this point, using the server makes more sense.

Design Considerations

This section will discuss several aspects of the design of bcfg2, and the particular use cases that motivated them.
Initially, this will consist of a discussion of the system metadata, and the intended usage model for package indices as
well.

System Metadata

Bcfg2 system metadata describes the underlying patterns in system configurations. It describes commonalities and
differences between these specifications in a rigorous way. The groups used by bcfg2's metadata are responsible for
differentiating clients from one another, and building collections of allocatable configuration.

The Bcfg2 metadata system has been designed with several high-level goals in mind. Flexibility and precision are
paramount concerns; no configuration should be undescribable using the constructs present in the bcfg2 repository. We
have found (generally the hard way) that any assumptions about the inherent simplicity of configuration patterns tend
to be wrong, so obscenely complex configurations must be representable, even if these requirements seem illogical
during the implementation.

In particular, we wanted to streamline several operations that commonly occurred in our environment.

Copying one node's profile to another node.•

In many environments, many nodes are instances of a common configuration specification. They all have similar roles
and software. In our environment, desktop machines were the best example of this. Other than strictly per-host
configuration like SSH keys, all desktop machines use a common configuration specification. This trivializes the
process of creating a new desktop machine.

Creating a specialized version of a currently existing profile.•

In environments with highly varied configurations, departmental infrastructure being a good example, "another
machine like X but with extra software" is a common requirement. For this reason, it must be trivially possible to

The Structure of Specifications 5

inherit most of a configuration specification from some more generic source, while being able to describe overriding
aspects in a convenient fashion.

3. Compose several pre-existing configuration aspects to create a new profile.•

The ability to compose configuration aspects allows the easy creation of new profiles based on a series of predefined
set of configuration specification fragments. The end result is more agility in environments where change is the norm.

In order for a classing system to be comprehensive, it must be usable in complex ways. The Bcfg2 metadata system has
constructs that map cleanly to first-order logic. This implies that any complex configuration pattern can be represented
(at all) by the metadata, as first-order logic is provably comprehensive. (There is a discussion later in the document
describing the metadata system in detail, and showing how it corresponds to first-order logic)

These use cases motivate several of the design decisions that we made:

There must be a many to one correspondence between clients and groups. Membership in a given profile group
must imbue a client with all of its configuration properties.

•

Package Management

The interface provided in the bcfg2 repository for package specification was designed with automation in mind. The
goal was to support an append only interface to the repository, so that users do not need to continuously re-write
already existing bits of specification.

Installing Bcfg2

QuickStart

TracNav menu

News•
Download•
Install•
Getting Started•
Documentation•
Contribute•
Help•
Publications•
Testimonials•

The steps below should get you from just thinking about a configuration management system to an operational
installation of Bcfg2. If you get stuck, be sure to check the mailing list or drop in to our IRC channel.

Get & Install Bcfg2 Server

We recommend running the server on a Linux machine for ease of deployment due to the availability of packages for
the dependencies.

QuickStart 6

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav

First, you need to download and install Bcfg2. Our Download has both source and packages for common environments,
while our Install page describes what to do once you have the packages in hand. To start you will need to install the
server on one machine and the client on one or more machines. Yes, your server can also be a client (and should be by
the time your environment is fully managed). Detailed installation instructions can be found on the Install page.

Set up Repository

The next step after installing the Bcfg packages is to configure the server. You can easily set up a personalized default
configuration by running, on the server,

bcfg2-admin init

You will be presented with a series of questions that will build a Bcfg2 configuration file in /etc/bcfg2.conf, set
up a skeleton repository (in /var/lib/bcfg2 by default), help you create ssl certificates, and do any other similar
tasks needed to get you started.

Once this process is done, you can start the Bcfg2 server:

/etc/init.d/bcfg2-server start

You can try it out by running the Bcfg2 client on the same machine, acting like it is your first client. Note: The
following command will tell the client to run in no-op mode, meaning it will only check the client against the
repository and report any changes it sees. It won't make any changes (partially because you haven't populated the
repository with any yet). However, nobody is perfect - you can make a typo, our software can have bugs, monkeys can
break in and hit enter before you are done. Don't run this command on a production system if you don't know what it
does and aren't prepared for the consequences. We don't know of anybody having problems with it before, but it is
better to be safe than sorry. And now for the command:

bcfg2 -q -v -n

That can be translated as "bcfg2 quick verbose no-op". The output should be something similar to:

Loaded tool drivers:
 Chkconfig POSIX PostInstall RPM

Phase: initial
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 242

Phase: final
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 242

Perfect! We have started out with an empty configuration, and none of our configuration elements are correct. It doesn't
get much cleaner than that. But what about those unmanaged entries? Those are the extra configuration elements
(probably all packages at the moment) that still aren't managed. Your goal now is to migrate each of those plus any it
can't see up to the "Correct entries" line.

Get & Install Bcfg2 Server 7

Populate Repository

Finally, you need to populate your repository. Unfortunately, from here on out we can't write up a simple recipe for you
to follow to get this done. It is very dependent on your local configuration, your configuration management goals, the
politics surrounding your particular machines, and many other similar details. We can, however, give you guidance.

After the above steps, you should have a toplevel repository structure that looks like:

bcfg-server:~ # ls /var/lib/bcfg2
Bundler/ Cfg/ Metadata/ Pkgmgr/ Rules/ SSHbase/ Svcmgr/ etc/

The place to start is the Metadata directory, which contains two files: clients.xml and groups.xml. Your
current clients.xml will look pretty close to:

<Clients version="3.0">
 <Client profile="basic" pingable="Y" pingtime="0" name="bcfg-server.example.com"/>
</Clients>

The clients.xml file is just a series of <Client /> tags, each of which describe one host you manage. Right
now we only manage one host, the server machine we just created. This machine is bound to the basic profile, is
pingable, has a pingtime of 0, and has the name bcfg-server.example.com. The two "ping" parameters don't
matter to us at the moment, but the other two do. The name parameter is the fully qualified domain name of your host,
and the profile parameter maps that host into the groups.xml file.

Our simple groups.xml file looks like:

<Groups version='3.0'>
 <Group profile='true' public='false' name='basic'>
 <Group name='suse'/>
 </Group>
 <Group name='ubuntu' toolset='debian'/>
 <Group name='debian' toolset='debian'/>
 <Group name='redhat' toolset='rh'/>
 <Group name='suse' toolset='rh'/>
 <Group name='mandrake' toolset='rh'/>
 <Group name='solaris' toolset='solaris'/>
</Groups>

There are two types of groups in Bcfg: profile groups (profile='true') and non-profile groups
(profile='false'). Profile groups can act as top-level groups that can be clients can bind to, while non-profile
groups only exist as members of other groups. In our simple starter case, we have a profile group named basic, and
that is the group that our first client bound to. Our first client is a SuSE machine, so it contains the suse group. Of
course, bcfg2-admin isn't smart enough to fill out the rest of your config, so the suse group further down is empty.

Let's say the first thing we want to set up on our machine is the message of the day. To do this, we simply need to
create a Bundle and add that Bundle to an appropriate group. In this simple example, we start out by adding

<Bundle name='motd'/>

to the basic group.

Next, we create a motd.xml file in the Bundler directory:

Populate Repository 8

<Bundle name='motd' version='2.0'>
 <ConfigFile name='/etc/motd' />
</Bundle>

Now when we run the client, we get slightly different output:

Loaded tool drivers:
 Chkconfig POSIX PostInstall RPM
Incomplete information for entry ConfigFile:/etc/motd; cannot verify

Phase: initial
Correct entries: 0
Incorrect entries: 1
Total managed entries: 1
Unmanaged entries: 242

In dryrun mode: suppressing entry installation for:
 ConfigFile:/etc/motd

Phase: final
Correct entries: 0
Incorrect entries: 1
Total managed entries: 1
Unmanaged entries: 242

We now have an extra unmanaged entry, bringing our total number of managed entries up to one. To manage it we
need to copy /etc/motd to /var/lib/bcfg2/Cfg/etc/motd/. Note the layout of that path: all plain-text
config files live in the Cfg directory. The directory structure under that directory directly mimics your real filesystem
layout, making it easy to find and add new files. The last directory is the name of the file itself, so in this case the fill
path to the motd file would be /var/lib/bcfg2/Cfg/etc/motd/motd. Copy your real /etc/motd file to
that location, run the client again, and you will find that we now have a correct entry:

Loaded tool drivers:
 Chkconfig POSIX PostInstall RPM

Phase: initial
Correct entries: 1
Incorrect entries: 0
Total managed entries: 1
Unmanaged entries: 242

Phase: final
Correct entries: 1
Incorrect entries: 0
Total managed entries: 1
Unmanaged entries: 242

Done! Now we just have 242 (or more) entries to take care of!

The Bundler is a relatively easy directory to populate. You can find many samples of Bundles in the BundleRepository,
many of which can be used without editing.

Populate Repository 9

Next Steps

Several other utilities can help from this point on:

bcfg2-info is a utility that instantiates a copy of the bcfg2 server core (minus the networking code) for examination.
From this, you can directly query:

Client Metadata•
Which entries are provided by particular plugins•
Client Configurations•

Run bcfg2-info, and type help and the prompt when it comes up.

bcfg2-admin can perform a variety of repository maintenance tasks. Run bcfg2-admin help for details.

Standard Group Names

Group Names
This pages describes a set of common group names. The goal is to build a small set of common group names that can
be used across installations. With any luck, this will increase portability of repository contents. Use of these names is,
and will continue to be entirely optional. None of these groups are profile groups. This will result in a highly functional
example repository, hosted in svn

Group Name Category Semantic Content
linux os Clients running the Linux kernel
solaris os Clients running the Solaris kernel
The following image describes the base compatibility OS groups for bcfg2. This file is available from
/trunk/repository/Metadata/bcfg2-os.xml.

Group Names 10

Example Bundles

Bundle Repository

TracNav menu

News•
Download•
Install•
Getting Started•
Documentation•
Contribute•
Help•
Publications•
Testimonials•

It is clear that one of the best ways to learn about a tool, especially one that relies on text representations in files, is by
example. Here's a collection of various Bundles from throughout the Bcfg2 community. All of the bundles in this top
table use the set of compatibility group names described in the group names wiki page.

Bundle Repository 11

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav

Bundle Name Description
at.xml At bundle
bcfg.xml Bcfg2 client bundle
ntp.xml NTP bundle
ssh.xml OpenSSH bundle
syslog.xml syslog bundle
The following bundles haven't yet been updated to follow the new group compatibility specification, but are still useful
examples.

snmpd.xml - An SNMP daemon Bundle.•
yp.xml - For all of your YP needs. Includes groups for more specific client control.•
torque.xml - Configures the Torque resource manager.•
kernel.xml - A rather complex Bundle from a mixed-architecture environment.•
moab.xml - A Bundle for the Moab scheduler.•
nagios.xml - A nice mixture of groups shows up in the Nagios Bundle.•

Bcfg2 Specifications

Bcfg2 Documentation
Bcfg2 Architecture1.
Installing Bcfg2

Standard Group Names1.
Example Bundles2.

2.

Bcfg2 Specifications3.
Probes

TCheetah Plugin1.
4.

DynamicGroups5.
Client Tool Drivers

Using Actions1.
6.

Deploying Bcfg2
Simple Deployments1.
A Near-Literal Deployment2.
An Abstract Deployment3.
Bcfg2 Server Administration4.
An example application of bcfg25.

7.

Developing for Bcfg28.
BCFG2 Reports

Dynamic Reports Installation1.
Dynamic Reports Usage2.

1.

Static Reports2.
Demo Repository3.
Troubleshooting4.
Manual Pages5.

9.

1.

Writing Bcfg2 Specification
Bcfg2 specifications are logically divided in to three areas:

Writing Bcfg2 Specification 12

Metadata•
Abstract•
Literal•

The metadata portion of the configuration assigns a client to its profile group and to its non profle groups. The profile
group is assigned in Metadata/clients.xml and the non profile group assignments are in Metadata/groups.xml.

The group memberships contained in the metadata are then used to constuct an abstract configuration for the client. An
abstract configuration for a client identifies the configuration entities (packages, configuration files, service, etc) that a
client requires, but it does not identify them explicitly. For instance an abstract configuration may identify that a client
needs the bcfg2 package with

<Package name=bcfg2/>

but this does not explicitly identify that an RPM package version 0.9.2 should be loaded from
http://rpm.repo.server/bcfg2-0.9.2-0.1.rpm. The abstract configuration is defined in the xml configuration files for the
Base and Bundles plugins.

A combination of a clients metadata (group memberships) and abstract configuration is then used to generate the clients
literal configuration. For instance the above abstract configuration entry may generate a literal configuration of

<Package name='bcfg2' version='0.9.2-0.1' type='yum'/>

A clients literal configuration is generated by a number of plugins that handle the different configuration entities.

Writing Bcfg2 Specification 13

Metadata Configuration
Metadata is a bcfg2 Plugin that provides system metadata support. The metadata mechanism has two types of
information, client metadata and group metadata.

The client metadata describes which top level group a client is associated with.

The group metadata describes groups in terms of what bundles and other groups they include.

Metadata Configuration 14

Usage of Groups in Metadata

Clients are assigned membership of groups in the Metadata descriptions. Clients can be directly assigned to 'profile' or
'public' groups. Client membership of all other groups is by those groups being associated with the profile or public
groups.

Clients are associated with profile groups in Metadata/clients.xml as shown below.

Clients are associated with public groups by use of the bcfg2 client '-p' option.

Metadata/clients.xml

The Metadata/clients.xml file contains the mappings of Profile Groups to clients. The file is just a series of <Client />
tags, each of which describe one host. A sample file is below:

<Clients version="3.0">
 <Client profile="backup-server" pingable="Y" pingtime="0" name="backup.example.com"/>
 <Client profile="console-server" pingable="Y" pingtime="0" name="con.example.com"/>
 <Client profile="kerberos-master" pingable="Y" pingtime="0" name="kdc.example.com"/>
 <Client profile="mail-server" pingable="Y" pingtime="0" name="mail.example.com"/>
 <Client name='foo' address='10.0.0.1' pingable='N' pingtime='-1'>
 <Alias name='foo-mgmt' address='10.1.0.1'/>
 </Client>
</Clients>

Clients Tag

The Clients tag has the following possible attributes:

Name Description Values
version Client schema version String

Client Tag

The Client tag has the following possible attributes:

Name Description Values

name Host name of client. This needs do be the name (possibly a FQDN) returned by a reverse
lookup on the connecting IP address. String

profile Profile group name to associate this client with String
pingable If the client is pingable (deprecated; for old reporting system) (Y|N)
uuid Establishes a per-node name that can be used to bypass dns-based client resolution String
password Establishes a per-node password that can be used instead of the global password String
location Requires requests to come from an IP address that matches the client record (fixed|floating)
secure Requires the use of the per-client password for this client (true|false)
pingtime Last time the client was pingable (deprecated; for old reporting system) String
address IP address of the client. Short-circuits hostname dns resolution String
Alias Alternative name and address for the client XML Element

Usage of Groups in Metadata 15

For detailed information on client authentication see Authentication

Metadata/groups.xml

The Metadata/groups.xml file contains Group and Profile definitions. Here's a simple Metadata/groups.xml file:

<Groups version='3.0'>
 <Group name='mail-server' profile='true'
 public='false'
 comment='Top level mail server group' >
 <Bundle name='mail-server'/>
 <Bundle name='mailman-server'/>
 <Group name='apache-server'/>
 <Group name='rhel-as-4-x86'/>
 <Group name='nfs-client'/>
 <Group name='server'/>
 </Group>
 <Group name='rhel-as-4-x86' toolset='rh'>
 <Group name='rhel'/>
 </Group>
 <Group name='apache-server'/>
 <Group name='nfs-client'/>
 <Group name='server'/>
 <Group name='rhel'/>
</Groups>

Nested/chained groups definitions are conjunctive (logical and). For instance, in the above example, a client associated
with the Profile Group 'mail-server' is also a member of the apache-server, rhel-as-4-x86, nfs-client, server and rhel
groups.

Metadata Groups Tag

The Groups tag has the following possible attributes:

Name Description Values
version Group schema version String
origin URL of master version (for common repo) String
revision Master version control revision String

Metadata Group Tag

The Group Tag has the following possible attributes:

Name Description Values
name Name of the group String
profile If a client can be directly associated with this group (True|False*)

public If a client can freely associate itself with this group. For use with bcfg2
-p option on the client. (True|False*)

toolset Describes which client-side logic should be used to make configuration
changes (rh|debian|solaris|aix|auto|gentoo)

category String

Client Tag 16

A group can only contain one instance of a group in any category. This
provides the basis for representing groups which are conjugates of one
another in a rigorous way. It also provides the basis for negation.

default Set as the profile to use for clients that are not associated with a profile
in clients.xml. (True|False*)

comment English text description of group String

Use of XInclude

XInclude is a W3C specification for the inclusion of external XML documents into XML source files. Much like the
use of #include in C, this allows complex definitions to be split into smaller, more manageable pieces. As of
bcfg2-0.9.0pre1, the Metadata plugin supports the use of XInclude specifications to split the clients.xml and groups.xml
files. This mechanism allows the following specification to produce useful results:

<Groups version='3.0' xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="my-groups.xml" />
 <xi:include href="their-groups.xml" />
</Groups>

Each of the included groups files has the same format. These files are properly validated by bcfg2-repo-validate. This
mechanism is useful for composing group definitions from multiple sources, or setting different permissions in an svn
repository.

Probes

Probes are implemented as a part of the metadata plugin, but are complex enough to deserve their own page. More
information is here

Dynamic Groups

Dynamic groups are likewise complex, and are covered on their own page

Abstract Configuration (Structures)
A clients Abstract Configuration is the inventory of configuration entities that should be installed on a client. Two
plugins provide the basis for the abstract configuration, the Bundler and Base.

The plugin Bundler builds descriptions of interrelated configuration entities. These are typically used for the
representation of services, or other complex groups of entities.

The Base provides a laundry list of configuration entities that need to be installed on hosts. These entities are
independent from one another, and can be installed individually without worrying about the impact on other entities.

Usage of Groups in Base and Bundles

Groups are used by the Base and Bundles plugins for selecting Configuration Entity Types for inclusion in a clients
abstract configuration. They can be thought of as:

Abstract Configuration (Structures) 17

http://www.w3.org/TR/xinclude/

if client is a member of group1 then
 assign to abstract config

Nested groups are conjunctive (logical and).

if client is a member of group1 and group2 then
 assign to abstract config

Group membership maybe negated. See "Writing Bundles" for an example.

Configuration Entity Types

Entities in the abstract configuration (and correspondingly in the literal configuration) can have one of several types. In
the abstract configuration, each of these entities only has a tag and the name attribute set.

The types of Configuration Entities that maybe assigned to the abstract configuration are as follows:

Tag Description
Package Software Package
ConfigFile Configuration File
Service Persistent system services and daemons
Directory File system Directories
SymLink Symbolic links
Permissions The permissions (not contents) of a POSIX path
Action Actions to be performed as part of a bundle installation
An example of each entity type is below.

<Package name='bcfg2'/>
<ConfigFile name='/etc/bcfg2.conf'/>
<Service name='ntpd'/>
<Directory name='/var/tmp'/>
<SymLink name='/dev/MAKEDEV'/>
<Permissions name='/etc/passwd'/>
<Action name='action_name'/>

Configuration Entity Name Attribute

With the exception of the Action Entity type, the value of the configuration entity name attribute is not arbitary. It must
map to entities of the same type in the Literal Configuration, which in turn map to physical entities on the client.

For the most part the physical entity being mapped to is intuitive and are listed below.

Tag Description
Package name of the software package
ConfigFile Full absolute path of the configuration file

Service Name of the init script for the service which may not be that same as the name of the daemon started or
the package name

Directory Full absolute path of the directories

Usage of Groups in Base and Bundles 18

SymLink Full absolute path of the symbolic linkss
Permissions Full absolute path of the file or directory
Action Arbitary name

Writing Bundles

Bundles consist of a set of configuration entities. These entities are grouped together due to a configuration-time
interdependency. Basic services tend to be the simplest example of these. They normally consist of

some software package(s)•
some configuration files•
an indication that some service should be activated•

If any of these pieces are installed or updated, all should be rechecked and any associated services should be restarted.

All files in the Bundles/ subdirectory of the repository are processed. Each bundle must be defined in its own file and
the filename must be the same as the bundle name with a .xml suffix.

ls Bundler
Glide3.xml
LPRng.xml
Tivoli-backup.xml
Tivoli.xml
a2ps.xml
abiword.xml
account.xml
adsm-client.xml
amihappy.xml
apache-basic.xml
apache.xml
apache2-basic.xml
apt-proxy.xml
at.xml
atftp-server.xml
atftp.xml
....

Groups can be used inside of bundles to differentiate which entries particular clients will receive. This is useful for the
case where entries are named differently across systems; for example, one linux distro may have a package called
openssh while another uses the name ssh. Configuration entries nested inside of Group elements only apply to clients
who are a member of those groups; multiply nested groups must all apply.

Also, groups may be negated; entries included in such groups will only apply to clients who are not a member of said
group.

When packages in a bundle are verified by the client toolset, the ConfigFiles included in the same bundle are taken into
consideration. That is, a package will not fail verification from a bcfg2 perspective if the package verification only
failed because of configuration files that are defined in the same bundle.

The following is an annotated copy of a bundle:

<Bundle revision='$Revision: 2668 $' name='ssh' version='2.0'
 origin='https://svn.mcs.anl.gov/repos/bcfg/trunk/repository/Bundler/ssh.xml'>
 <ConfigFile name='/etc/ssh/ssh_host_dsa_key'/>

Configuration Entity Name Attribute 19

 <ConfigFile name='/etc/ssh/ssh_host_rsa_key'/>
 <ConfigFile name='/etc/ssh/ssh_host_dsa_key.pub'/>
 <ConfigFile name='/etc/ssh/ssh_host_rsa_key.pub'/>
 <ConfigFile name='/etc/ssh/ssh_host_key'/>
 <ConfigFile name='/etc/ssh/ssh_host_key.pub'/>
 <ConfigFile name='/etc/ssh/sshd_config'/>
 <ConfigFile name='/etc/ssh/ssh_config'/>
 <ConfigFile name='/etc/ssh/ssh_known_hosts'/>
 <Group name='rpm'>
 <Package name='openssh'/>
 <Package name='openssh-askpass'/>
 <Service name='sshd'/>
 <Group name='fedora' >
 <Group name='fc4' negate='true'>
 <Package name='openssh-clients'/>
 </Group>
 <Package name='openssh-server'/>
 </Group>
 </Group>
 <Group name='deb'>
 <Package name='ssh'/>
 <Service name='ssh'/>
 </Group>
</Bundle>

In this bundle, most of the entries are common to all systems. Clients in group "deb" get one extra package and service,
while clients in group "rpm" get two extra packages and an extra service. In addition, clients in group "fedora" and
group "rpm" get one extra package entries, unless they are not in the fc4 group, in which case, they get an extra
package. Notice that this file doesn't describe which versions of these entries that clients should get, only that they
should get them. (Admittedly, this example is slightly contrived, but demonstrates how group entries can be used in
bundles)

Group Entry
all /etc/ssh/ssh_host_dsa_key
all /etc/ssh/ssh_host_rsa_key
all /etc/ssh/ssh_host_dsa_key.pub
all /etc/ssh/ssh_host_rsa_key.pub
all /etc/ssh/ssh_host_key
all /etc/ssh/ssh_host_key.pub
all /etc/ssh/sshd_config
all /etc/ssh/ssh_config
all /etc/ssh/ssh_known_hosts
rpm Package openssh
rpm Package openssh-askpass
rpm Service sshd
rpm and fedora Package openssh-server
rpm and fedora and not fc4 Package openssh-clients
deb Package ssh
deb Service ssh

Writing Bundles 20

Bundle Tag

The Bundle Tag has the following possible attributes:

Name Description Values
name The name of the bundle String
version Bundle schema version String
origin URL of master version (for common repo) String
revision Master version control revision String
As mentioned above the Configuration Entity Tags may only have the name attribute in Bundle definitions.

Abstract Group Tag

In the Abstract Configuration plugins (Base and Bundle) the Group Tag may have the following attributes:

Name Description Values
name Name of group. String
negate Negate the group association (is not a member of) (True|False*)
An abstract group may contain any of the Configuration Entity types and other groups.

Using Base

The Base plugin provides a mechanism to add independent configuration entities to a client's abstract configuration. All
files in the Base/ subdirectory of the repository are processed, and all entries that fall within the scope of the client
metadata are included in its abstract configuration.

$ ls Base/
centos-4-x86.xml
fedora-core-4-x86.xml
rhel-as-4-x86.xml
rhel-es-4-x86.xml
rhel-ws-4-x86_64.xml
rhel-ws-4-x86.xml

<Base>
 <Group name='Centos4.4-Standard'>
 <Package name='audit'/>
 <Package name='audit-libs'/>
 <Package name='basesystem'/>
 <Package name='bash'/>
 <Package name='bcfg2'/>
 <Package name='beecrypt'/>

 <Package name='yum'/>
 <Package name='zlib'/>
 <Group name='x86_64'>
 <Package name='systemimager-x86_64initrd_template'/>
 </Group>
 </Group>
</Base>

Bundle Tag 21

The format of the Base files are similar to those used by the Bundler. The majority of the elements are usually
Packages, but ConfigFiles, Directories, Services, Permissions, and SymLinks may all be defined. A partial example is
below:

Base Tag

The Base Tag has no attributes

As mentioned above the Configuration Entity Tags contained in a Base definition may only have the name attribute in
Base definitions.

Abstract Group Tag

In the Abstract Configuration plugins (Base and Bundle) the Group Tag may have the following attributes:

Name Description Values
name Name of group. String
negate Negate the group association (is not a member of) (True|False*)
An abstract group may contain any of the Configuration Entity types and other groups.

Literal Configuration (Generators)
A Generator is a bcfg2 piece of code that is run to generate the literal configuration for a host using a combination of
the hosts metadata and abstract configuration.

A Generator can take care of a particular configuration element. Any time this element is requested by the client, the
server dynamically generates it either by crunching data and creating new information or by reading a file off of disk
and passes it down to the client for installation.

Usage of Groups in Generators

Similar to Abstract Configuration plugins, groups are used by generator plugins for selecting Configuration Entities for
inclusion in a clients literal configuration. They can be thought of as:

if client is a member of group1 then
 assign to abstract config

Nested groups are conjunctive (logical and).

if client is a member of group1 and group2 then
 assign to abstract config

How the groups are configured is specific to the plugin, but here are two common methods:

xml configuration file (Pkgmgr, Rules)•
file name encoding (Cfg, TCheetah, SSHBase)•

Details are included on each plugin's page.

Literal Configuration (Generators) 22

Generators

Each of the generators is covered on their own page.

Plugin Description

Actions Action entries are commands that are executed either before bundle installation, after bundle installation or
both.

Cfg The Cfg plugin provides a repository to describe configuration file contents for clients. In its simplest form,
the Cfg repository is just a directory tree modeled off of the directory tree on your client machines.

Deps The deps plugin allows inter-entry dependencies (like package prerequisites) to be mapped independent of
client roles.

Hostbase Hostbase is an IP management system built on top of Bcfg2.

Pkgmgr The Pkgmgr plugin define what packages are available for a host or image and where to find those
packages.

Rules The Rules plugin is responsible for defining the details about the Directory, Permissions, SymLink and
Service elements.

SSHbase
SSHbase is a purpose build bcfg2 plugin for managing ssh host keys. It is responsible for making ssh keys
persist beyond a client rebuild and building a proper ssh_known_hosts file, including a correct localhost
record for the current system.

TCheetah
The TCheetah plugin allows you to use the cheetah templating system to create files, instead of the various
diff-based methods offered by the Cfg plugin. It also allows you to include the results of probes executed
on the client in the created files.

TGenshi The TGenshi plugin uses the genshi toolkit for generating files and functions much like the TCheetah
plugin

Probes

Probes

At times you need to gather information from a client machine before you can generate its configuration. For example,
if some of your machines have both a local scratch disk and a system disk while others only have the system disk, you
would want to know this information to correctly generate an /etc/auto.master autofs config file for each type.
Here we will look at how to do this.

First you will need to set up the TCheetah plugin, as described on the TCheetahPlugin page.

Next, we need to create a Probes directory in our toplevel repository location:

mkdir /var/lib/bcfg2/Probes

This directory will hold any small scripts we want to use to grab information from client machines. These scripts can be
in any scripting language; the shebang line (the #!/usr/bin/env some_interpreter_binary line at the
very top of the script) is used to determine the script's interpreter.

Now we need to figure out what exactly we want to do. In this case, we want to hand out an /etc/auto.master
file that looks like:

Generators 23

http://www.cheetahtemplate.org/
http://genshi.edgewall.org/

/software /etc/auto.software --timeout 3600
/home /etc/auto.home --timeout 3600
/hometest /etc/auto.hometest --timeout 3600
/nfs /etc/auto.nfs --timeout 3600
/scratch /etc/auto.scratch --timeout 3600

for machines that have a scratch disk. For machines without an extra disk, we want to get rid of that last line:

/software /etc/auto.software --timeout 3600
/home /etc/auto.home --timeout 3600
/hometest /etc/auto.hometest --timeout 3600
/nfs /etc/auto.nfs --timeout 3600

So, from the Probes standpoint we want to create a script that counts the number of SCSI disks in a client machine. To
do this, we create a very simple Probes/scratchlocal script:

cat /proc/scsi/scsi | grep Vendor | wc -l

Running this on a node with n disks will return the number n+1, as it also counts the controller as a device. To
differentiate between the two classes of machines we care about, we just need to check the output of this script for
numbers greater than 2. We do this in the template.

The TCheetah/ directory is laid out much like the Cfg/ directory. For this example we will want to create a
TCheetah/etc/auto.master directory to hold the template of the file in question. Inside of this template we will
need to check the result of the Probe script that got run and act accordingly. The
TCheetah/etc/auto.master/template file looks like:

/software /etc/auto.software --timeout 3600
/home /etc/auto.home --timeout 3600
/hometest /etc/auto.hometest --timeout 3600
/nfs /etc/auto.nfs --timeout 3600
#if int($self.metadata.probes["scratchlocal"]) > 2
/scratch /etc/auto.scratch --timeout 3600
#end if

Any Probe script you run will store its output in $self.metadata.probes["scriptname"], so we get to our
scratchlocal script's output as seen above. Note that we had to wrap the output in an int() call; the script output
is treated as a string, so it needs to be converted before it can be tested numerically.

With all of these pieces in place, the following series of events will happen when the client is run:

Client runs1.
Server hands down our scratchlocal probe script2.
Client runs the scratchlocal probe script and hands its output back up to the server3.
Server generates /etc/auto.master from its template, performing any templating substitutions/actions
needed in the process.

4.

Server hands /etc/auto.master down to the client5.
Client puts file contents in place.6.

Now we have a nicely dynamic /etc/auto.master that can gracefully handle machines with different numbers of
disks. All that's left to do is to add the /etc/auto.master to a Bundle:

<ConfigFile name='/etc/auto.master'/>

Probes 24

Other examples

Dynamically assign a group based on the Ubuntu version :

#!/bin/sh

if [! -e /etc/lsb-release]; then exit 0; fi
. /etc/lsb-release
echo group:$DISTRIB_CODENAME

Detect if the server is a Linux-VServer host :

#!/bin/sh

Test the proc
TEST=`cat /proc/self/status|grep s_context| cut -d":" -f2|cut -d" " -f 2`

case "$TEST" in
 "")
 # Not a vserver kernel
 echo group:host
 ;;
 "0")
 # Vserver kernel but it is the HOST
 echo group:host
 ;;
 [0-9]*)
 # Vserver
 echo group:vserver
 ;;
esac

Host and Group Specific probes

Bcfg2-0.9.6 adds the ability to alter probes based on client hostname and group membership. These files work similarly
to files in Cfg.

If multiple files with the same basename apply to a client, the most specific one is used. Only one instance of a probe is
served to a given client, so if a host-specific version and generic version apply, only the client-specific one will be
used.

TCheetah Plugin

TCheetah Templating Plugin
This document reflects the TCheetah plugin in bcfg2 0.8.4 and later.

The TCheetah plugin allows you to use the cheetah templating system to create files, instead of the various diff-based
methods offered by the Cfg plugin. It also allows you to include the results of probes executed on the client in the
created files.

TCheetah Templating Plugin 25

http://www.cheetahtemplate.org/

To begin, you will need to download and install the Cheetah templating engine from http://www.cheetahtemplate.org/.
Once it is installed, you can enable it by adding TCheetah to the generators line in /etc/bcfg2.conf on
your Bcfg server. For example:

generators = SSHbase,Cfg,Pkgmgr,Svcmgr,Rules,TCheetah

The TCheetah plugin makes use of a Cfg-like directory structure located in in a TCheetah subdirectory of your
repository, usually /var/lib/bcfg2/TCheetah. Each file has a directory containing two files, template and
info. The template is a standard Cheetah template with two additions:

self.metadata is the client's metadata•
self.properties is an xml document of unstructured data•

The info file is formatted like :info files from Cfg.

Mostly, people will want to use client metadata.

self.metadata variables

The following variables are available for self.metadata :

hostname•
bundles•
groups•
toolset•
categories•
probes•
uuid•
password•

self.metadata is an instance of the class ClientMetadata of file Bcfg2/Server/Plugins/Metadata.py.

self.properties

properties is a python ElementTree object, loaded from the data in /var/lib/bcfg2/etc/properties.xml. That file should
have a Properties node at its root.

Example properties.xml:

<Properties>
 <host>
 <www.example.com>
 <rootdev>/dev/sda</rootdev>
 </www.example.com>
 </host>
</Properties>

You may use any of the ElementTree? methods to access data in your template. Several examples follow, each
producing an identical result on the host 'www.example.com':

self.metadata variables 26

http://www.cheetahtemplate.org/
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/src/lib/Server/Plugins/Metadata.py
http://codespeak.net/lxml/

$self.properties.find('host').find('www.example.com').find('rootdev').text
$self.properties.find('host').find($self.metadata.hostname).find('rootdev').text
${self.properties.xpath('host/www.example.com/rootdev')[0].text}
${self.properties.xpath('host/' + self.metadata.hostname + '/rootdev')[0].text}
#set $path = 'host/' + $self.metadata.hostname + '/rootdev'
${self.properties.xpath($path)[0].text}
${self.properties.xpath(path)[0].text}

Simple Example

bcfg2/TCheetah/foo/template

> buildfile /foo <clientname>
Hostname is $self.metadata.hostname
Groups:
#for $group in $self.metadata.groups:
 * $group
#end for
Categories:
#for $category in $self.metadata.categories:
 * $category -- $self.metadata.categories[$category]
#end for

Probes:
#for $probe in $self.metadata.probes:
 * $probe -- $self.metadata.probes[$probe]
#end for

bcfg2/TCheetah/foo/info

perms: 624

Output

The following output can be generated with bcfg2-info. Note that probe information is not persistent, hence, it only
works when clients directly query the server. For this reason, bcfg2-info output doesn't reflect current client probe state.

<ConfigFile name="/foo" owner="root" perms="0624" group="root">
Hostname is topaz.mcs.anl.gov
Groups:
 * desktop
 * mcs-base
 * ypbound
 * workstation
 * xserver
 * debian-sarge
 * debian
 * a
Categories:
 * test -- a

Probes:
</ConfigFile>

self.properties 27

Example: Replace the crontab plugin

In many cases you can use the TCheetah plugin to avoid writing custom plugins in Python. This example replaces the
crontab plugin (Bcfg2.Server.Plugins.Crontab). This plugin randomizes the time of cron.daily execution with a stable
result. Cron.daily is run at a consistent, randomized time between midnight and 7am.

#import random
#silent random.seed($self.metadata.hostname)

/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the `crontab'
command to install the new version when you edit this file.
This file also has a username field, that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin://bin

m h dom mon dow user command
17 * * * * root run-parts --report /etc/cron.hourly
$random.randrange(0,59) $random.randrange(0,6) * * * root test -x /usr/sbin/anacron || run-parts --report /etc/cron.daily
47 6 * * 7 root test -x /usr/sbin/anacron || run-parts --report /etc/cron.weekly
52 6 1 * * root test -x /usr/sbin/anacron || run-parts --report /etc/cron.monthly.

DynamicGroups

Dynamic Groups
As of bcfg2-0.9.0pre6, Bcfg2 supports the use of dynamic groups. These groups are not included in a client's profile
group, but instead are derived from the results of probes executed on the client. These dynamic groups need not already
exist in Metadata/groups.xml. If a dynamic group is defined in Metadata/groups.xml, clients that include this group will
also get all included groups and bundles.

Setting up dynamic groups

In order to define a dynamic group, setup a probe that outputs the text based on system properties:

group:groupname

This output is processed by the bcfg2 server, and results in dynamic group membership in groupname for the client.
See the Probes page for a more thorough description of probes.

Client Tool Drivers

TracNav menu

News•
Download•
Install•
Getting Started•

Dynamic Groups 28

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav

Documentation•
Contribute•
Help•
Publications•
Testimonials•

Client Tool Drivers

Client tool drivers allow bcfg2 to execute configuration operations by interfacing with platform and distribution
specific tools.

Tool drivers handle any reconfiguration or verification operation. So far we have tools that primarily deal with
packaging systems and service management. The POSIX tool also handles file system and permissions/groups
operations. To write your own tool driver, to handle a new packaging format, or new service architecture see
WritingClientToolDrivers.

When the bcfg2 client is run, it attempts to instantiate each of these drivers. The succeeding list of drivers are printed as
a debug message after this process has completed. Drivers can supercede one another, for example, the Yum driver
conflicts (and unloads) the RPM driver. This behavior can be overridden by running the bcfg2 client with the -D flag.
This flag takes a colon delimited list of drivers to use on the system.

Currently these are the tool drivers that are distributed with bcfg2:

Action (trunk/bcfg2/src/lib/Client/Tools/Action.py)
Pre and post-install tests and actions. This driver executes commands and supplies status information to the
bcfg2 server via the statistics mechanism. It can also be used to prevent bundle installation when pre-conditions
are not met. See the UsingActions page for more details.

APT (trunk/bcfg2/src/lib/Client/Tools/APT.py)
Debian Packages. This tool driver is used to handle packages on dpkg based systems and employs the "apt"
executable.

Blast (trunk/bcfg2/src/lib/Client/Tools/Blast.py)
Blastwave Packages. This tool driver is for blastwave packages on solaris

Chkconfig (trunk/bcfg2/src/lib/Client/Tools/Chkconfig.py)
To start and stop services on primarily Redhat based distros. NOTE: Start and stop are standard arguments, but
the one for reload isn't consistent across services. You can specify which argument to use with the reload
property in Service tags. Example: <Service name="ftp" reload="condrestart"
status="on" type="chkconfig">

DebInit (trunk/bcfg2/src/lib/Client/Tools/DebInit.py)
Debian Service Support; exec's update-rc.d to configure services.

Encap (trunk/bcfg2/src/lib/Client/Tools/Encap.py)
Encap Packages.

FreeBSDInit (trunk/bcfg2/src/lib/Client/Tools/FreeBSDInit.py)
FreeBSD Service Support. Only bundle updates will work.

TracNav menu 29

http://www.encap.org

FreeBSDPackage (trunk/bcfg2/src/lib/Client/Tools/FreeBSDPackage.py)
FreeBSD Packages. Verifies packages and their version numbers but can't install packages.

launchd (trunk/bcfg2/src/lib/Client/Tools/launchd.py)
Mac OS X Services. To use this tool, you must maintain a standard launch daemon .plist file in
/Library/LaunchDaemons/ (example ssh.plist) and setup a <Service
name="com.openssh.sshd" type="launchd" status="on" /> entry in your config to load or
unload the service. Note the name is the Label specified inside of the .plist file

Portage (trunk/bcfg2/src/lib/Client/Tools/Portage.py)
Gentoo Packages.

POSIX (trunk/bcfg2/src/lib/Client/Tools/POSIX.py)
Files and Permissions are handled by the POSIX driver. Usage well documented other places.

RcUpdate (trunk/bcfg2/src/lib/Client/Tools/RcUpdate.py)
Uses the rc-update executable to manage services on distributions such as Gentoo.

RPM (trunk/bcfg2/src/lib/Client/Tools/RPM.py)
Executes rpm to manage packages most often on redhat based systems.

RPMng (trunk/bcfg2/src/lib/Client/Tools/RPMng.py)
Next-generation RPM tool, will be default in upcoming release. Handles RPM sublties like epoch and
prelinking and 64-bit platforms better than RPM client tool. RPMng/YUMng Documentation.

SMF (trunk/bcfg2/src/lib/Client/Tools/SMF.py)
Solaris Service Support.

SYSV (trunk/bcfg2/src/lib/Client/Tools/SYSV.py)
Handles System V Packaging format that is available on Solaris.

Yum (trunk/bcfg2/src/lib/Client/Tools/Yum.py)
Handles RPMs using the YUM package manager.

YUMng (trunk/bcfg2/src/lib/Client/Tools/YUMng.py)
Handles RPMs using the YUM package manager. Handles sublties better than the Yum client tool.
RPMng/YUMng Documentation.

Using Actions

Using Actions

TracNav menu

News•
Download•
Install•
Getting Started•

Using Actions 30

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav

Documentation•
Contribute•
Help•
Publications•
Testimonials•

This page describes use of the new Action configuration entry. Action entries are commands that are executed either
before bundle installation, after bundle installation or both. If exit status is observed, a failing pre-action will cause no
modification of the enclosing bundle to be performed; all entries in included in that bundle will not be modified. Failing
actions are reported through Bcfg2's reporting system, so they can be centrally observed. Actions look like:

<Action timing='pre|post|both' name='name' command='cmd text' when='always|modified'
 status='ignore|check'/>

Attribute Values Meaning
timing pre, post, both When the action is run
name freeform action name
command freeform command text
when always, modified If the action is always run, or only when a bundle should be or has been modified
status ignore, check If the return code of the action should be reported or not
Note that PostInstall commands can be easily ported over to Action entries. This is not required, but PostInstall success
is not reported, so upgrade is highly recommended. For example:

<PostInstall name='/path/to/command arg1 arg2'/>

becomes

<Action timing='post' when='modified' name='action_name' command='/path/to/command arg1 arg2' status='ignore'/>

Note that the status attribute tells the bcfg2 client to ignore return status, causing failures to still not be centrally
reported. If central reporting of action failure is desired, set this attribute to 'check'. Also note that Action entries, like
PostInstall entries, are only usable from inside of Bundles. Actions included in Base will not be executed.

Actions cannot be completely defined inside of a bundle; they are a bound entry, much like Packages, Services or
ConfigFiles. The Rules plugin can bind these entries. For example to include the above action in a bundle, first the
Action entry must be included in the bundle:

<Bundle name='bundle_name'>
 ...
 <Action name='action_name'/>
</Bundle>

Then a corresponding entry must be included in the Rules directory, like:

<Rules priority='0'>
<Action timing='post' when='modified' name='action_name' command='/path/to/command arg1 arg2' status='ignore'/>
</Rules>

This allows different clients to get different actions as a part of the same bundle based on group membership.

TracNav menu 31

Deploying Bcfg2

Simple Deployments

A Near-Literal Deployment

An Abstract Deployment

Bcfg2 Server Administration

An example application of bcfg2

Developing for Bcfg2

Developing For Bcfg2
While the Bcfg2 server provides a good interface for representing general system configurations, its plugin interface
offers the ability to implement configuration interfaces and representation tailored to problems encountered by a
particular site. This chapter describes what plugins are good for, what they can do, and how to implement them.

Bcfg2 Plugins

Bcfg2 plugins are loadable python modules that the Bcfg2 server loads at initialization time. These plugins can
contribute to the functions already offered by the Bcfg2 server or can extend its functionality. In general, plugins will
provide some portion of the configuration for clients, with a data representation that is tuned for a set of common tasks.
Much of the core functionality of Bcfg2 is implemented by several plugins, however, they are not special in any way;
new plugins could easily supplant one or all of them.

The following table describes the various functions of bcfg2 plugins.

Name Description

Probes Plugins can issue commands to collect client-side state (like hardware inventory) to
include in client configurations

ConfigurationEntry List Plugins can construct a list of per-client configuration entry lists to include in client
configurations.

ConfigurationEntry
contents Literal values for configuration entries.

XML-RPC functions Plugins can export function calls that expose internal functions.

Writing Bcfg2 Plugins

Bcfg2 plugins are python classes that subclass from Bcfg2.Server.Plugin.Plugin. Several plugin-specific values must be
set in the new plugin. These values dictate how the new plugin will behave with respect to the above four functions.
The following table describes all important member fields.

Developing For Bcfg2 32

Name Description Format
name The name of the plugin string

version The plugin version (generally tied to revctl
keyword expansion). string

author The plugin author. string

rmi Set of functions to be exposed as XML-RPC
functions List of function names (strings)

Entries

Multidimentional dictionary of keys that
point to the function
used to bind literal contents for a given
configuration entity.

Dictionary of ConfigurationEntityType, Name keys
and function reference values

BuildStructures Function that returns a list of the structures
for a given client Member function

GetProbes Function that returns a list of probes that a
given client should execute Member function

ReceiveData Function that accepts the probe results for a
given client. Member function

Example Plugin
import Bcfg2.Server.Plugin
class MyPlugin(Bcfg2.Server.Plugin.Plugin):
 '''An example plugin'''
 # All plugins need to subclass Bcfg2.Server.Plugin.Plugin
 __name__ = 'MyPlugin'
 __version__ = '1'
 __author__ = 'me@me.com'
 __rmi__ = ['myfunction']
 # myfunction is not available remotely as MyPlugin.myfunction

 def __init__(self, core, datastore):
 Bcfg2.Server.Plugin.Plugin.__init__(self, core, datastore)
 self.Entries = {'ConfigFile':{'/etc/foo.conf': self.buildFoo}}

 def myfunction(self):
 '''function for xmlrpc rmi call'''
 #do something
 return True

 def buildFoo(self, entry, metadata):
 '''Bind per-client information into entry based on metadata'''
 entry.attrib.update({'owner':'root', 'group':'root', 'perms':'644'})
 entry.text = '''contents of foo.conf'''

BCFG2 Reports

The Bcfg2 Reporting System
Bcfg2's reporting system is its killer feature. It allows administrators to gain a broad understanding of the configuration
state of their entire environment. It summarizes

The Bcfg2 Reporting System 33

Configuration changes and when they were made•
Discrepancies between the specification and current client states

Clients can be grouped by misconfiguration type♦
•

Configuration entries that are not specified•
Overall client summaries according to these types•

There are two systems, the old system, which builds static reports based on a series of XSLT stylesheets and a new
dynamic reporting system that uses django and a database backend.

The Dynamic Reporting System (Installation Guide)•
The Static Reporting System•

=== Dynamic Reports ==

Dynamic Reports Installation

Overview

Installation of the new reporting system requires installation of a python module and configuration of the Apache
webserver with a virtual host. Additionally, until fully integrated, periodically an "import script" must be executed via
Cron or similar mechanism.

Versions 0.9.5pre1 and greater no longer need to be installed at the root url for a given host, and therefore no longer
require their own virtual host.

Prerequisites

sqlite3•
pysqlite2•
Django 0.96.x•
mod-python•

Install

setup bcfg2.conf or bcfg2-web.conf

Be sure to include the specified fields included the example bcfg2.conf file. These can be specified in either
/etc/bcfg2.conf, if it is readable by the webserver user, or /etc/bcfg2-web.conf. This changed in 0.9.5.

Install skeleton database

Inside the bcfg2-tarball/examples/ directory from the tarball you will find brpt.sqlite. Copy this file to
<path-to-bcfg2-repository>/etc/brpt.sqlite

If you are not using sqlite (the default choice), please see the "Notes on Alternative Databases" section below.

At this point we can import statistics date in to the database from your clients.xml and statistics.xml files.

Dynamic Reports Installation 34

http://www.djangoproject.com

execute the following: python .../site-packages/Bcfg2/Server/Reports/importscript.py

(Versions 0.8.7 and prior must specify: python
.../site-packages/Bcfg2/Server/Reports/importscript.py-c
<repo>/Metadata/clients.xml -s <repo>/etc/statistics.xml)

It might be a good idea to write a 1-line shell script to execute this very long command; it is only an interim measure
until the /etc/statistics.xml file is obsoleted.

At this point you shouldn't get any errors or tracebacks. Common problems include incorrect installation of the
pysqlite2 module.

Next we configure Apache:

An example site config is included below for the vhost "reports.mcs.anl.gov":

<VirtualHost reports.mcs.anl.gov>
 ServerAdmin webmaster@mcs.anl.gov
 ServerName reports.mcs.anl.gov
 DocumentRoot /var/www/reports
 <Directory /var/www/reports>
 Order deny,allow
 Deny from all
 Allow from localhost #you may want to change this
 AllowOverride None
 </Directory>

 # Possible values include: debug, info, notice, warn, error, crit,
 # alert, emerg.
 LogLevel warn

 ServerSignature Off

 # Stop TRACE/TRACK vulnerability
 <IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)
 RewriteRule .* - [F]
 </IfModule>
<Location "/">
 SetHandler python-program
 PythonHandler django.core.handlers.modpython
 SetEnv DJANGO_SETTINGS_MODULE Bcfg2.Server.Reports.settings
 PythonDebug On
</Location>
<Location "/site_media/">
 SetHandler None
</Location>
</VirtualHost>

The first three lines of this configuration must be customized per site.

The bcfg2-tarball/reports/site_media/ directory needs to be copied to
/var/www/reports/site_media/ It could live anywhere; as long as the contents are accessible on the virtual
host at /site_media/.

Install 35

At this point you should be able to point your web browser to the virtualhost you created and see the new reports.

One final step is to configure your system to import statistics data regularly. execute the following: python
.../site-packages/Bcfg2/Server/Reports/importscript.py

(Versions 0.8.7 and prior must specify: python
.../site-packages/Bcfg2/Server/Reports/importscript.py-c
<repo>/Metadata/clients.xml -s <repo>/etc/statistics.xml)

on a regular basis, perhaps as often as every 5 or 10 minutes or as infrequent as daily, so your reports are always up to
date.

Notes on Alternative Databases

If you choose to use a different database, you'll need to edit settings.py from inside of the brpt module.
Instructions on this process can be found on the Django website. The provided sqlite database file is
pre-populated with the appropriate tables, if you choose a different database engine, you will need to
run "python manage.py syncdb" from the brpt module directory to configure it before importing any
data. As of vers 0.9.5, these settings are moved to the more appropriate /etc/bcfg2.conf

If you encounter any problems or have suggestions for these instructions feedback is welcome and encouraged.

Dynamic Reports Usage

Bcfg2 Documentation
Bcfg2 Architecture1.
Installing Bcfg2

Standard Group Names1.
Example Bundles2.

2.

Bcfg2 Specifications3.
Probes

TCheetah Plugin1.
4.

DynamicGroups5.
Client Tool Drivers

Using Actions1.
6.

Deploying Bcfg2
Simple Deployments1.
A Near-Literal Deployment2.
An Abstract Deployment3.
Bcfg2 Server Administration4.
An example application of bcfg25.

7.

Developing for Bcfg28.
BCFG2 Reports

Dynamic Reports Installation1.
Dynamic Reports Usage2.

1.

Static Reports2.
Demo Repository3.
Troubleshooting4.
Manual Pages5.

9.

1.

Notes on Alternative Databases 36

New Reporting System
Now available in Bcfg2 0.8.2

Installation

Installation Guide

Summary and Features

The new reporting system was implemented to address a number of deficiencies in the previous system. By storing
statistics data in a relational database, we are now able to view and analyze more information about the state of the
configuration, including information about previous configuration. Specific features in the new system include:

The ability to look at past statistics information. •

More recent data concerning hosts. The import script may be run quite often, updating the database that
contains all statistics information. In the future we anticipate development of a database based statistics module
for the server that will allow statistics updates to happen immediately as configuration changes happen.

•

Additional information display in reports. Primarily, reasons for configuration item verification failure are now
accessible. This additional data is provided only by the most recent client.

•

Instead of static pages, pages are generated on the fly, allowing users to drill down to find out about a specific
host, rather than have one huge page with too much information.

•

Planned improvements include

- Accounts, customized displays for each admin. And privacy of config data.

- Config browsing capabilities; to look at your config in an interesting way. Fixing all the known bugs from below.

Unfortunately with all the improvements, there are a few less exciting elements about the new reporting system. The
new reporting system moves away from static pages and towards a real web application, which causes mainly problems
with dependancies and makes installation and more difficult. This should become less of a problem over time as
Django is packaged and we develop a better installation process for a web app. This should become clear when reading
the Installation section that follows.

Usage

You can use these new reports in tandem with the old system. Currently the new reporting system simply periodically
runs an importer script via cron. This imports the XML statistics and clients files to the relational database, building
historical information. In the future, a new statistics module in the server will allow direct writing to the database
whenever a configuration interaction occurs, which will make the reports always up to date.

New Reporting System 37

New reports script in 0.9.6pre2 and later

Command Line Use

bcfg2-reports

bcfg2-reports allows you to retrieve data from the database about clients, and the states of their current interactions. It
also allows you to change the expired/unexpired states.

The utility runs as a standalone application. It does, however, use the models from
/src/lib/Server/Reports/reports/models.py.

A number of different options can be used to change what bcfg2-reports displays:

-a : shows all hosts, including expired hosts•
-b NAME : single-host mode - shows bad entries from the current interaction of NAME•
-c : shows only clean hosts•
-d : shows only dirty hosts•
-e NAME : single-host mode - shows extra entries from the current interaction of NAME•
-h : shows help and usage info about bcfg2-reports•
-s NAME : single-host mode - shows bad and extra entries from the current interaction of NAME•
-x NAME : toggles expired/unexpired state of NAME•
--badentry=KIND,NAME : shows only hosts whose current interaction has bad entries in of KIND kind and
NAME name; if a single argument ARG1 is given, then KIND,NAME pairs will be read from a file of name
ARG1

•

--extraentry=KIND,NAME : shows only hosts whose current interaction has extra entries in of KIND kind and
NAME name; if a single argument ARG1 is given, then KIND,NAME pairs will be read from a file of name
ARG1

•

--fields=ARG1,ARG2,... : only displays the fields ARG1,ARG2,... (name,time,state)•
--sort=ARG1,ARG2,... : sorts output on ARG1,ARG2,... (name,time,state)•

Screenshots

Static Reports

The Bcfg2 Reporting System
The Bcfg2 reporting system collects and displays information about the operation of the Bcfg2 client, and the
configuration states of target machines.

Goals

The reporting system provides an interface to administrators describing a few important tasks

Client configuration state, particularly aspects that do not match the configuration specification. Information•

The Bcfg2 Reporting System 38

about bad and extra configuration elements is included.
Client execution results (a list of configuration elements that were modified)•
Client execution performance data (including operation retry counts, and timings for several critical execution
regions)

•

This data can be used to understand the current configuration state of the entire network, the operations performed by
the client, how the configuration changes propagate, and any reconfiguration operations that have failed.

Retention Model

The current reporting system stores statistics in an XML data store, by default to <repo>/etc/statistics.xml.
It retains either one or two statistic sets per host. If the client has a clean configuration state, the most recent (clean)
record is retained. If the client has a dirty configuration state, two records are retained. One record is the last clean
record. The other record is the most recent record collected, detailing the incorrect state.

This retention model, while non-optimal, does manage to persistently record most of the data that users would like.

Output

Several output reports can be generated from the statistics store with the command line tool
bcfg2-build-reports.

Nodes Digest•
Nodes Individual•
Overview Statistics•
Performance•

The data generated by these reports can be delivered by several mechanisms:

HTML•
Email•
RSS•

Shortcomings and Planned Enhancements

When designing the current reporting system, we were overly concerned with the potential explosion in data size over
time. In order to address this, we opted to use the retention scheme described above. This approach has several
shortcomings:

A comprehensive list of reconfiguration operations (with associated timestamps) isn't retained•
Client results for any given day (except the last one) aren't uniformly retained. This means that inter-client
analysis is difficult, if not impossible

•

We plan to move to a database backend to address the dataset size problem and start retaining all information. The
move to a SQL backend will allow many more types of queries to be efficiently processed. It will also make
on-demand reports simpler.

Goals 39

Other sorts of information would also be useful to track. We plan to add the ability to tag a particular configuration
element as security related, and include this in reports. This will aid in the effective prioritization of manual and failed
reconfiguration tasks.

Capability Goals (posed as questions)

What machines have not yet applied critical updates?•
How long did critical updates take to be applied?•
What configuration did machine X have on a particular date?•
When did machine X perform configuration update Y?•

Demo Repository

Troubleshooting

Troubleshooting
From time to time, Bcfg2 produces results that the user finds surprising. This can happen either due to bugs or user
error. This page describes several techniques to gain visibility into the bcfg2 client and server and understand what is
going on.

Figure out if the malfunction is on the client or server side.
Cache a copy of the client using bcfg2 -c /tmp/config.xml. This file contains all aspects of client configuration.
This file is structured as a series of bundles and base entries. Search for the entry of interest. If it is correct,
then the client is at issue.

1.

Review server log messages.
The bcfg2-server process logs to syslog facility LOG_DAEMON. The server produces a series of messages
upon a variety of events and errors.

2.

Check if all repository XML files conform to schemas.
Bcfg2 comes with XML schemas describing all of the XML formats used in the server repository. A validation
command , bcfg2-repo-validate, is included with the source distribution and all packages. Run it with the -v
flag to see each file and the results if its validation.

3.

If the bcfg2 server is not reflecting recent changes, try restarting the bcfg2-server process.
If this fixes the problem, it is either a bug in the underlying file monitoring system (fam or gamin) or a bug in
Bcfg2's file monitoring code. In either case, file a ticket in the tracking system. In the ticket, include:

Filesystem monitoring system (fam or gamin)♦
kernel version (if on linux)♦
if any messages of the form "Processed N <fam/gamin> events in M seconds" appeared between the
modification event and the client configuration generation request appeared in the server log

♦

Which plugin handled the file in the repostiory (Cfg, Svcmgr, Rules, Pkgmgr, TCheetah, Metadata)♦
If a touch of the file after the modification causes the problem to go away♦

4.

Bcfg2 server operations can be simulated using the bcfg2-info command.
The command is interactive, and has commands to allow several useful operations

Current client metadata (profile and group) settings -- clients♦
Current group metadata values -- groups♦
Configuration entries provided by plugins -- mappings♦
Build a config file for a client -- buildfile <filename> <hostname>♦
Build the abstract configuration (list of entries) for a client -- showentries <client> <type>♦

5.

Troubleshooting 40

https://trac.mcs.anl.gov/projects/bcfg2/newticket

Build the complete configuration for a client -- build <hostname> <output-file>♦

Manual Pages

Manual Pages
bcfg2-admin(8) bcfg2-admin(8)

NAME
 bcfg2-admin - Perform repository administration tasks

SYNOPSIS
 bcfg2-server init mineentry <client> <entry type> <entry name>
 minestruct <client> viz [-h] [-b] [-k] [-o output.png] [-r]

DESCRIPTION
 bcfg2-server This daemon serves configurations to clients based on the
 data in its repository.

VIZ OPTIONS
 -h
 Include hosts in diagram
 -b
 Include bundles in diagram
 -o <output file>
 Write to outfile file instead of stdout
 -r
 Produce raw graphviz output
 -k
 Add a shape/color key

 bcfg2-admin(8)

bcfg2-build-reports(8) bcfg2-build-reports(8)

NAME
 bcfg2-build-reports - Generate state reports for bcfg2 clients

SYNOPSIS
 bcfg2-build-reports

DESCRIPTION
 bcfg2-build-reports Build all client state reports. See the Bcfg2 man-
 ual for report setup information.

OPTIONS
 -c <configuration file>
 Specify an alternate report configuration path. The default is
 repo/etc/reports-configuration.xml
 -h
 Produce a help message

Manual Pages 41

 -s <statistics Path>
 Use an alternative path for the statistics file. The default is
 repo/etc/statistics.xml

SEE ALSO
 bcfg(1), bcfg2-server(8)

BUGS
 None currently known

 bcfg2-build-reports(8)

bcfg2-info(8) bcfg2-info(8)

NAME
 bcfg2-info - Creates a local version of the bcfg2 server core for state
 observation

SYNOPSIS
 bcfg2-info [-c <config file>]

DESCRIPTION
 bcfg2-info Instantiate an instance of the Bcfg2 core for data examina-
 tion and debugging purposes.

OPTIONS
 -c <config file>
 Specify an alternative location for bcfg2.conf. (Default
 /etc/bcfg2.conf)

SEE ALSO
 bcfg2(1), bcfg2-server(8)

BUGS
 None currently known

 bcfg2-info(8)

bcfg2-repo-validate(8) bcfg2-repo-validate(8)

NAME
 bcfg2-repo-validate - Check Bcfg2 repository data against data schemas

SYNOPSIS
 bcfg2-repo-validate [-v]

DESCRIPTION
 bcfg2-repo-validate This script checks data against schemas, and it
 quite helpful in finding typos or malformed data.

OPTIONS
 -C
 Specify path to bcfg2.conf (default /etc/bcfg2.conf)

Manual Pages 42

SEE ALSO
 bcfg2(1), bcfg2-server(8)

BUGS
 None currently known

 bcfg2-repo-validate(8)

bcfg2-server(8) bcfg2-server(8)

NAME
 bcfg2-server - Server for client configuration specifications

SYNOPSIS
 bcfg2-server [-D <pidfile>] [-d] [-v] [-C <Client>]

DESCRIPTION
 bcfg2-server This daemon serves configurations to clients based on the
 data in its repository.

OPTIONS
 -d
 Run bcfg2 in debug mode.
 -v
 Run bcfg2 in verbose mode.
 -C <ConfigFile Path>
 Use an alternative path for bcfg2.conf. The default is
 /etc/bcfg2.conf
 -D
 Daemonize, placing the program pid in the specified pidfile.

SEE ALSO
 bcfg2(1), bcfg2-repo-validate(8)

BUGS
 None currently known

 bcfg2-server(8)

bcfg2(1) bcfg2(1)

NAME
 bcfg - reconfigure machine based on settings in BCFG2

SYNOPSIS
 bcfg2 [-d] [-v] [-p] [-c cache file] [-e] [-f config file] [-I] [-q]
 [-b bundle] [-r removal mode]

DESCRIPTION
 bcfg2 Runs the bcfg2 configuration process on the current host. This
 process consists of first fetching and executing probes, uploading
 probe results, fetching the client configuration, checking the current

Manual Pages 43

 client state, attempting to install the desired configuration, and
 finally uploading statistics about the bcfg2 execution and client
 state.

OPTIONS
 -d
 Run bcfg2 in debug mode.
 -v
 Run bcfg2 in verbose mode.
 -b <bundle>
 Run bcfg2 against only one bundle in the configuration.
 -P
 Run bcfg2 in paranoid mode. Diffs will be logged for configura-
 tion files marked as paranoid by the Bcfg2 server.
 -q
 Run bcfg2 in quick mode. Package checksum verification won't be
 performed. This mode relaxes the constraints of correctness, and
 thus should only be used in safe conditions.
 -D <driver1>,<driver2>
 Specify a set of bcfg2 tool drivers.
 -I
 Run bcfg2 in interactive mode. The user will be prompted before
 each change.
 -n
 Run bcfg2 in dry-run mode. No changes will be made to the sys-
 tem.
 -B
 Run bcfg2 in build mode. Services aren't started, as the system
 may still be in miniroot.
 -r <mode>
 Cause bcfg2 to remove extra configuration elements it detects.
 Mode is one of all, services, or packages. All removes all
 entries. Likewise, services and packages remove only the extra
 configuration elements of the respective type.
 -p <profile>
 Assert a profile for the current client.
 -e
 When in verbose mode, display extra entry information (temporary
 until verbosity rework)
 -k
 Run in bulletproof mode. This currently only effect behavior in
 the debian toolset; it calls apt-get update and clean and dpkg
 --configure --pending.

SEE ALSO
 bcfg2-server(8), bcfg2-info(8)

BUGS
 bcfg2(1)

bcfg2(1) bcfg2(1)

NAME
 bcfg - reconfigure machine based on settings in BCFG2

SYNOPSIS
 bcfg2 [-d] [-v] [-p] [-c cache file] [-e] [-f config file] [-I] [-q]
 [-b bundle] [-r removal mode]

Manual Pages 44

DESCRIPTION
 bcfg2 Runs the bcfg2 configuration process on the current host. This
 process consists of first fetching and executing probes, uploading
 probe results, fetching the client configuration, checking the current
 client state, attempting to install the desired configuration, and
 finally uploading statistics about the bcfg2 execution and client
 state.

OPTIONS
 -d
 Run bcfg2 in debug mode.
 -v
 Run bcfg2 in verbose mode.
 -b <bundle>
 Run bcfg2 against only one bundle in the configuration.
 -P
 Run bcfg2 in paranoid mode. Diffs will be logged for configura-
 tion files marked as paranoid by the Bcfg2 server.
 -q
 Run bcfg2 in quick mode. Package checksum verification won't be
 performed. This mode relaxes the constraints of correctness, and
 thus should only be used in safe conditions.
 -D <driver1>,<driver2>
 Specify a set of bcfg2 tool drivers.
 -I
 Run bcfg2 in interactive mode. The user will be prompted before
 each change.
 -n
 Run bcfg2 in dry-run mode. No changes will be made to the sys-
 tem.
 -B
 Run bcfg2 in build mode. Services aren't started, as the system
 may still be in miniroot.
 -r <mode>
 Cause bcfg2 to remove extra configuration elements it detects.
 Mode is one of all, services, or packages. All removes all
 entries. Likewise, services and packages remove only the extra
 configuration elements of the respective type.
 -p <profile>
 Assert a profile for the current client.
 -e
 When in verbose mode, display extra entry information (temporary
 until verbosity rework)
 -k
 Run in bulletproof mode. This currently only effect behavior in
 the debian toolset; it calls apt-get update and clean and dpkg
 --configure --pending.

SEE ALSO
 bcfg2-server(8), bcfg2-info(8)

BUGS
 bcfg2(1)

Manual Pages 45

	tmpYECYvBtracpdf

